Rational averaged gauss quadrature rules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated generalized averaged Gauss quadrature rules

Generalized averaged Gaussian quadrature formulas may yield higher accuracy than Gauss quadrature formulas that use the same moment information. This makes them attractive to use when moments or modified moments are cumbersome to evaluate. However, generalized averaged Gaussian quadrature formulas may have nodes outside the convex hull of the support of the measure defining the associated Gauss...

متن کامل

Gauss-type Quadrature Rules for Rational Functions

When integrating functions that have poles outside the interval of integration, but are regular otherwise, it is suggested that the quadrature rule in question ought to integrate exactly not only polynomials (if any), but also suitable rational functions. The latter are to be chosen so as to match the most important poles of the integrand. We describe two methods for generating such quadrature ...

متن کامل

Rational Gauss Quadrature

The existence of (standard) Gauss quadrature rules with respect to a nonnegative measure dμ with support on the real axis easily can be shown with the aid of orthogonal polynomials with respect to this measure. Efficient algorithms for computing the nodes and weights of an n-point Gauss rule use the n × n symmetric tridiagonal matrix determined by the recursion coefficients for the first n orth...

متن کامل

The existence and construction of rational Gauss-type quadrature rules

Consider a hermitian positive-definite linear functional F, and assume we have m distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence and construction of nth rational Gauss-Radau (m = 1) and Gauss-Lobatto (m = 2) quadrature formulas that approximate F{f}. These are quadrature formulas with n positive weights and with the n−m remaining nodes real a...

متن کامل

Generalized averaged Szegő quadrature rules

Szegő quadrature rules are commonly applied to integrate periodic functions on the unit circle in the complex plane. However, often it is difficult to determine the quadrature error. Recently, Spalević introduced generalized averaged Gauss quadrature rules for estimating the quadrature error obtained when applying Gauss quadrature over an interval on the real axis. We describe analogous quadrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2002379r